Rational Approximation Preconditioners for General Sparse Linear Systems

نویسندگان

  • Philippe Guillaume
  • Yousef Saad
  • Maria Sosonkina
چکیده

This paper presents a class of preconditioning techniques which exploit rational function approximations to the original matrix. The matrix is rst shifted and then an incomplete LU factorization of the resulting matrix is computed. The resulting factors are then used to compute a better preconditioner to the original matrix. Since the incomplete factorization is made on a shifted matrix, a good LU factorization is obtained without allowing much ll-in. The result needs to be extrapolated to the non-shifted matrix. Thus, the main motivation for this process is to save memory. The method is useful for matrices whose incomplete LU factorizations are poor, e.g., unstable. An error analysis for the conjugate gradient algorithm gives some guidance for choosing the shift of the matrix, in the special case where the shifted system is solved exactly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Preconditioners for Block Pentadiagonal Linear Systems Based on New Approximate Factorization Methods

In this paper, getting an high-efficiency parallel algorithm to solve sparse block pentadiagonal linear systems suitable for vectors and parallel processors, stair matrices are used to construct some parallel polynomial approximate inverse preconditioners. These preconditioners are appropriate when the desired target is to maximize parallelism. Moreover, some theoretical results about these pre...

متن کامل

Orthogonal Projections of the Identity: Spectral Analysis and Applications to Approximate Inverse Preconditioning

Many strategies for constructing different structures of sparse approximate inverse preconditioners for large linear systems have been proposed in the literature. In a more general framework, this paper analyzes the theoretical effectiveness of the optimal preconditioner (in the Frobenius norm) of a linear system over an arbitrary subspace of Mn (R). For this purpose, the spectral analysis of t...

متن کامل

Block Approximate Inverse Preconditioners for Sparse Nonsymmetric Linear Systems

Abstract. In this paper block approximate inverse preconditioners to solve sparse nonsymmetric linear systems with iterative Krylov subspace methods are studied. The computation of the preconditioners involves consecutive updates of variable rank of an initial and nonsingular matrix A0 and the application of the Sherman-MorrisonWoodbury formula to compute an approximate inverse decomposition of...

متن کامل

1 Schur complement preconditioners for distributed general sparse linear systems ?

This paper discusses the Schur complement viewpoint when developing parallel preconditioners for general sparse linear systems. Schur complement methods are pervasive in numerical linear algebra where they represent a canonical way of implementing divide-and-conquer principles. The goal of this note is to give a brief overview of recent progress made in using these techniques for solving genera...

متن کامل

Block Triangular Preconditioners for -matrices and Markov Chains

BLOCK TRIANGULAR PRECONDITIONERS FOR -MATRICES AND MARKOV CHAINS MICHELE BENZI AND BORA UÇAR Abstract. We consider preconditioned Krylov subspace methods for solving large sparse linear systems under the assumption that the coefficient matrix is a (possibly singular) -matrix. The matrices are partitioned into block form using graph partitioning. Approximations to the Schur complement are used t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999